Abstract

An experimental arrangement is described which enables high quality 31P NMR spectra of compressed spinach leaf pieces to be continuously recorded in which all the resonances observed (cytoplasmic and vacuolar Pi, glycerate-3-P, nucleotides) were sharp and well resolved. 31P NMR spectra obtained from intact chloroplasts showed a distinct peak of stromal Pi. An upfield shift of the stromal Pi resonance was associated with a decrease in the external Pi and vice versa. Nucleotides were largely invisible to NMR in intact chloroplasts, whereas the same nucleotides reappeared in a typical 31P NMR spectrum of an acid extract of intact chloroplasts. Perfusion of compressed spinach leaf pieces with a medium containing Pi triggered a dramatic increase in the vacuolar Pi over 12 h. Addition of choline to the Pi-free perfusate of compressed leaf pieces resulted in a steady accumulation of phosphorylcholine in the cytoplasmic compartment at the expense of cytoplasmic Pi. When a threshold of cytoplasmic Pi concentration was attained, Pi was drawn from the vacuole to sustain choline phosphorylation. In spinach leaves, the vacuole represents a potentially large Pi reservoir, and cycling of Pi through vacuolar influx (energy dependent) and efflux pathways is an efficient system that may provide for control over the cytosolic-free Pi and phosphorylated intermediate concentrations. 31P NMR spectra of neutralized perchloric acid extracts of spinach leaves showed well defined multipeak resonances (quadruplet) of intracellular phytate. The question of cytosolic Pi concentration in green cells is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.