Abstract
It has been found in experiments with high resolution 31P-NMR spectroscopy (200 MHz) that the phosphocreatine peak is splitted into two different peaks in the mixtures of H 2O and D 2O and is single but with different chemical shifts in pure H 2O and D 2O. This phenomenon is explained by substitution of protons of guanidino group in phosphocreatine by deuterium. The effect of splitting disappeared at extreme pH values (>8.5 or <4.0) and at temperatures higher than 45°C due to accelerated proton-deuterium exchange. Creatine kinase added to phosphocreatine solution also lowered its temperature of peaks' collapse by 5°–10°C. A saturation (spin) transfer method was used to show that the phosphoryl group transfer to ADP in creatine kinase active center is slower with deuterium-substituted phosphocreatine than with H-phosphocreatine. The data are taken to show the importance of the proton transfer step in the creatine kinase reaction mechanism and acceleration of phosphocreatine proton-deuterium exchange by creatine kinase.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Biochemical and Biophysical Research Communications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.