Abstract

Abstract The spin—lattice relaxation time of the 31 P nucleus was measured for 11 phosphorylated molecules (phosphine oxides, trialkylphosphates and phosphoramides) dissolved in nitromethane at three different frequencies and as a function of the temperature for three compounds. The different contributions to the relaxation rate due to dipolar, chemical shift anisotropy and spin—rotation interactions were determined and the reorientational correlation times of the molecules were deduced when the anisotropy of the chemical shift tensor of the 31 P nucleus could be (re)determined. The quadrupolar coupling constant of the 17 O nucleus was also determined from the linewidth of the nuclear magnetic resonance signals, for phosphine oxides and triphenylphosphate, giving some information on the electronic distribution into the phosphoryl bond. The spin—rotation coupling constants for trimethylphosphine oxide and triphenylphosphine oxide were deduced and the chemical shift anisotropy Δσ of trialkylphosphates estimated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.