Abstract

Prominin-1 is a recently discovered pentaspan membrane protein present in characteristic cholesterol-based vesicles and associated with microvilli. These vesicles are used to deliver prominin-1 to the apical plasma membrane in a number of cell types. Previous work on uterine epithelial cells has demonstrated a loss of microvilli and the presence of large, cholesterol-based vesicles at the time of implantation. Thus this study aims to determine a role for prominin-1 in rat uterine epithelial cells during early pregnancy. Immunofluorescence microscopy reveals punctate and diffuse prominin-1 staining below the apical plasma membrane on day 1 of pregnancy. At the time of blastocyst implantation (day 6) however, prominin-1 appears concentrated at the apical surface of the cell. Western blotting of isolated uterine epithelial cell lysate revealed a change in prominin-1 glycosylation during early pregnancy. Prominin-1 was determined to be glycosylated on day 1 of pregnancy, but these carbohydrate side chains were lost by the time of attachment. Results seen in the present study indicate that prominin-containing vesicles may be prevented from reaching the apical plasma membrane by the terminal web on day 1 of pregnancy. On day 6, the loss of the terminal web may allow the vesicles to approach and incorporate into the apical plasma membrane, as seen with other uterine vesicles. The deglycosylation of prominin-1 at this time is suggested to allow the protein to bind its ligand and activate downstream signalling pathways that permit implantation. This study constitutes the first reported observation of prominin in endometrial lumenal epithelial cells. These preliminary results, in consideration with previous reports of prominin expression in trophoblast cells, suggest an important role for this protein in early pregnancy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.