Abstract

Sustainability of the soilless greenhouse system is under discussion in open cycle systems, where excess nutrient solution (NS) draining from the substrate is released into the environment. Closed growing systems (CGS) lead to the saving of water and fertilizers. The aim of this research was to compare two CGS: nutrient film technique (NFT) and trough-bench technique [Subirrigation (SUB)]. We report the results of yield and water use efficiency (WUE) of tomato (Lycopersicon esculentum Mill. cv. Kabiria) plants. NFT plants were grown with two electrical conductivity (EC) levels (2-4 and 6-8 dS·m-1) of NS (its highest EC was obtained by increasing all the ions therein). In the SUB system, two water tensions (-4 and –8 kPa) of susbtrate were compared; a NS with an electrical conductivity level of 2 dS·m-1 was used. The tensions were measured through tensiometers. Tomato plants were transplanted at the fourth to fifth true-leaf stage into pots containing 8 L of perlite for SUB. In both CGS, the plants were placed on steel gullies (slope of 2%). Six clusters per plant were harvested. Total and commercial yield were not influenced by the CGS (on average, 1959 and 1853 g/plant, respectively). The average weight of the fruit was lower in the SUB system's plants (40 vs. 43 g/fruit, respectively, for SUB and NFT). Salinity and water stresses resulted in a reduction of 26% of the yield and 16% of the average weight of fruits. The WUE was higher in SUB than NFT (30.7 vs. 26.0 g·L-1, respectively). Salinity stress reduced WUE (29.4 v.s 22.6 g·L-1 with 2–4 and 6–8 dS·m-1, respectively), whereas water stress did not.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call