Abstract
High-bandwidth (BW) and large-capacity storage systems with NAND Flash memory (hereinafter referred to as “NAND”) have been increasingly required for big data applications, such as the field of advanced biomedical science [1]. However, a conventional NAND interface (I/F), e.g., Toggle DDR, with multi-drop bus topology has a tradeoff between BW and capacity due to the large load capacitance of NAND packages (PKGs). Although increasing the number of parallelized lanes of Toggle DDR improves both BW and capacity, it costs a large number of pins/wires on a controller/PCB. In order to overcome these problems, a daisy-chained serial I/F has been proposed [2]. In the I/F, bridge chips mask large load capacitance of NAND PKGs seen from a controller’s transmitter (TX) so that a 12.8Gb/s downlink is realized. However, the multi-band multiplexing technique employed in [2] has a drawback in the difficulty in implementing an uplink because severe timing control is required for cumulatively multiplexing multiple bands (i.e., channels) in each bridge chip. In order to realize both a downlink and an uplink with lower power consumption, this paper presents a newly developed serial I/F with three key techniques: (1) PAM-4-based 4-channel (4-ch) multiplexing, (2) cascaded CDR circuits in (3) ring topology. The fabricated transceiver (TRX) for the proposed I/F achieves 3.69pJ/b with a BER lower than 10-15 at 25.Gb/s with PRBS31 through 1.84dB of channel loss at 6.4GHz. The proposed I/F can achieve a state-of-the-art FoM (defined as “# of packages × Data Rate / power consumption”) of 1.80PKG.Gb/s/mW.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.