Abstract

Abstract Thirty-five crossbred Angus heifers (body weight = 359.5 >± 7.1 kg) were randomly assigned to a 2 × 2 factorial design to evaluate the effects of vitamin and mineral supplementation [VMSUP; supplemented (VTM) vs. unsupplemented (NoVTM)] and rate of gain [GAIN; low gain (LG), 0.28 kg/d vs. moderate gain (MG), 0.79 kg/d] during the first 83 d of gestation on trace mineral concentrations in fetal liver, muscle, and allantoic (ALF) and amniotic (AMF) fluids. The VTM treatment (113 g supplement•heifer-1•d-1) was initiated a minimum 71 d before breeding. At breeding, heifers were either maintained on the basal diet (LG) or received the MG diet by adding a protein/energy supplement to the basal diet. On d 83 of gestation, samples of fetal liver, muscle, ALF, and AMF were collected and analyzed for trace mineral concentrations. In fetal liver, Se, Cu, Mn, and Co concentrations were greater (P ≤ 0.04) for VTM than NoVTM, while Mo and Co greater (P ≤ 0.04) for LG than MG. In fetal muscle, VTM increased (P ≤ 0.02) concentrations of Se and Zn, whereas LG increased (P < 0.01) Zn. In ALF, Mo concentrations were affected (P = 0.03) by a VMSUP × GAIN interaction, with VTM-MG greater than NoVTM-MG; while VTM increased (P < 0.01) concentrations of Se and Co. Trace mineral concentrations were not affected (P ≥ 0.13) in AMF. In conclusion, VTM increased fetal liver Se, Cu, Mn, and Co concentrations; fetal muscle Se and Zn; and ALF Se and Co; while LG increased fetal liver Mo and Co concentrations and fetal muscle Zn. Our results confirm that managerial decisions associated with vitamin and mineral supplementation and rate of gain can alter fetal reserves of trace elements during early pregnancy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call