Abstract

Current challenges in (eco)toxicology are in understanding the transformation of (reactive) substances, and how transformation affects toxic modes of action. Empirical assessment of transformation products of, practically an infinite number of substances, via experimentation, is impossible. Predicting transformation products for (benchmarking) compounds from conditions, facilitates risk analyses. This study applied calculus to predict transformation products of an important environmental and medicinal/toxicological marker, carbamazepine. As radicals are ubiquitous in humans and the environment, we looked into radical-mediated transformations of carbamazepine as a benchmark. We calculated proportions of their speciation states as function of redox conditions, which we took as pH and O2 concentration, describing transformation via covalent and ionic interactions. Formation of ring-contracted products with neuro-immunological activity is thermodynamically favored under anaerobic conditions and at low pH. Experimentally observed product distributions and toxicities reflect that pattern. Our predictive method may support toxicity predictions for other substances and conditions 'similar' to the current case study via interpolation. This paves the way for a more coherent, effective and easier risk assessment of transformation products.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.