Abstract

A spin-polarized electron beam has been used as the probe beam in a transmission electron microscope by using a photocathode electron gun with a photocathode made of a GaAs–GaAsP strained superlattice semiconductor with a negative electron affinity (NEA) surface. This system had a spatial resolution of the order of 1 nm for at 30 keV and it can generate an electron beam with an energy width of 0.24 eV without employing monochromators. This narrow width suggests that a NEA photocathode can realize a high energy resolution in electron energy-loss spectroscopy and a longitudinal coherence of 3 × 10−7 m.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.