Abstract

The location of stem cells within the adult CNS makes them impractical for surgical removal and autologous transplantation. Their limited availability and histocompatibility issues further restrict their use. In contrast, olfactory neuroepithelium (ONe) located in the nasal passageways has a continuous regenerative capability and can be biopsied readily. To investigate the potential of human ONe to provide viable populations of pluripotent cells, ONe was harvested from cadavers 6–18 h postmortem, dissociated, plated and fed every 3–4 days. Heterogeneous populations of neurons, glia, and epithelia were identified with lineage-specific markers. After several weeks, 5–10% of the cultures produced a population of rapidly dividing cells, which in turn, produced neurospheres containing at least two subpopulations based on neuronal and glial specific antigens. Most contained one or more neuronal markers; a few were positive for A2B5 and/or GFAP. To determine if growth modulators would affect the neurosphere forming cells, they were exposed to dibutyryl–cAMP. The nucleotide reduced cell division and increased process formation. Although the cells had been passaged more than 70 times, their viability remained constant as shown by the MTT viability index. Donor age or sex were not limiting factors, because neurospheres have been established from cadavers of both sexes from 50 to 95 years old at time of death. The ex vivo expansion of these cells will provide a patient-specific population of cells for immunological, genetic and pharmacological evaluation. Our long-term goal is to determine the utility of these cells to facilitate CNS repair.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call