Abstract
3-tert-Butyl-4-hydroxyanisole (3-BHA), one of the most commonly used antioxidants in foodstuffs, has been identified as an environmental endocrine disruptor (EED) with obesogenic activity. Given the increasing concern on EED-caused dysfunction in lipid metabolism, whether 3-BHA could influence the development of brown adipocytes is worthy of being explored. In this study, the effect of 3-BHA on the differentiation of C3H10T1/2 mesenchymal stem cells (MSCs) into brown adipocytes was investigated. Exposure to 3-BHA promoted lipogenesis of the differentiated cells, as evidenced by the increased intracellular lipid accumulation and elevated expressions of adipogenic biomarkers, including peroxisome proliferator-activated receptor γ (PPARγ), Perilipin, Adiponectin, and fatty acid binding protein 4 (FABP4). Surprisingly, the thermogenic capacity of the differentiated cells was compromised as a result of 3-BHA exposure, because neither intracellular mitochondrial contents nor expressions of thermogenic biomarkers, including uncoupling protein 1 (UCP1), peroxisome proliferator-activated receptor γ coactivator 1α (PGC1α), cell-death-inducing DNA fragmentation factor α subunit-like effector A (CIDEA), and PR domain containing 16 (PRDM16), were increased by this chemical. The underlying molecular mechanism exploration revealed that, in contrast to p38 MAPK, 3-BHA stimulation induced phosphorylation of Smad1/5/8 in an exposure time-dependent manner, suggesting that this chemical-triggered Smad signaling was responsible for the shift of C3H10T1/2 MSC differentiation from a brown to white-like phenotype. The finding herein, for the first time, revealed the perturbation of 3-BHA in the development of brown adipocytes, uncovering new knowledge about the obesogenic potential of this emerging chemical of concern.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.