Abstract

Small-ring silacycles are important organosilane species in main-group chemistry and have found numerous applications in organic synthesis. 3-Silaazetidine, a unique small silacycle bearing silicon and nitrogen atoms, has not been adequately explored due to the lack of a general synthetic scheme and its sensitivity to air. Here, we describe that 3-silaazetidine can be easily prepared in situ from diverse air-stable precursors (RSO2NHCH2SiR12CH2Cl). 3-Silaazetidine shows excellent functional group tolerance in a palladium-catalyzed ring expansion reaction with terminal alkynes, giving 3-silatetrahydropyridines and diverse silaazacycle derivatives, which are promising ring frameworks for the discovery of Si-containing functional molecules.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call