Abstract

A series of [(3-pyridylalkyl)piperidylidene]- and (nicotinoylpiperidylidene)benzocycloheptapyridine derivatives, Ia,b, were prepared and evaluated for PAF antagonist and H1 antihistamine activity. PAF antagonist activity was investigated by the in vitro PAF-induced platelet aggregation assay (PPA) and the in vivo PAF-induced hypotension test in rats (PH) and mortality test in mice (PM). For the evaluation of H1 antihistamine activity, the in vitro histamine-induced contraction of the guinea-pig ileum assay (HC) and the in vivo histamine-induced hypotension test (HH) in normotensive rats were used. The potential antiallergic activity of the compounds was evaluated using the active anaphylactic shock test in mice. These compounds are structurally related to loratadine (1) and were generated by replacement of the ethoxycarbonyl group of 1 with substituted 3-pyridylmethyl and nicotinoyl moieties. Both anti-PAF and H1 antihistamine activities have shown a high dependence on the exact nature and position of the substituent in the pyridine ring. Optimum structure 19 (UR-12592) incorporating a (5-methyl-3-pyridyl)methyl radical displayed an unique dual activity inhibiting both PAF-induced effects (PPA, IC50 = 3.7 microM; PH, ID50 = 0.44 mg/kg iv; PM, ID50 = 1.9 mg/kg po) and histamine-induced effects (HC, IC50 = 3.9 nM; HH, ID50 = 1.4 mg/kg iv). Furthermore, 19 was highly active in the passive cutaneous anaphylactic shock in rats (ID50 = 1.2 mg/kg po) and strongly protected mice and rats from mortality induced by endotoxin (ID50 = 1.2 and 0.5 mg/kg iv, respectively). Compound 19 showed itself to be devoid of CNS depressant effects, neither modifying spontaneous motor activity nor prolonging barbiturate-sleeping time in mice at a dose of 100 mg/kg po, and is now under development.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.