Abstract

Many microorganisms have been reported to produce compounds that promote plant growth and are thought to be involved in the establishment and maintenance of symbiotic relationships. 3-Phenyllactic acid (PLA) produced by lactic acid bacteria was previously shown to promote root growth in adzuki cuttings. However, the mode of action of PLA as a root-promoting substance had not been clarified. The present study therefore investigated the relationship between PLA and auxin. PLA was found to inhibit primary root elongation and to increase lateral root density in wild-type Arabidopsis, but not in an auxin signaling mutant. In addition, PLA induced IAA19 promoter fused β-glucuronidase gene expression, suggesting that PLA exhibits auxin-like activity. The inability of PLA to promote degradation of Auxin/Indole-3-Acetic Acid protein in a yeast heterologous reconstitution system indicated that PLA may not a ligand of auxin receptor. Using of a synthetic PLA labeled with stable isotope showed that exogenously applied PLA was converted to phenylacetic acid (PAA), an endogenous auxin, in both adzuki and Arabidopsis. Taken together, these results suggest that exogenous PLA promotes auxin signaling by conversion to PAA, thereby regulating root growth in plants.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.