Abstract

The utilization of polyamide 10,12 (PA10,12) composites in various industries has been limited constrained by their inherent low toughness, making it a challenge to achieve a balance between toughness and structural integrity through conventional elastomer addition strategies. Herein, we introduce a straightforward method for the concurrent toughening and reinforcement of PA10,12 composites. This is accomplished by blending polyolefin elastomer (POE) and 3-pentadecylphenol (PDP) with the PA10,12 matrix. The incorporation of 5 wt% PDP effectively blurred the PA10,12/POE interface due to PDP's role as a compatibilizer. This phenomenon is attributed to the formation of intermolecular hydrogen bonds, as evidenced by Fourier Transform Infrared Spectroscopy (FTIR) analysis. Further investigation, using differential scanning calorimetry (DSC), elucidated the crystallization thermodynamics and kinetics of the resulting binary PA10,12/POE and ternary PA10,12/POE/PDP composites. Notably, the crystallization temperature (Tc) was observed to decrease from 163.1 °C in the binary composite to 161.5 °C upon the addition of PDP. Increasing the PDP content to 10% led to a further reduction in Tc to 159.5 °C due to PDP's capacity to slow down crystallization. Consequently, the ternary composite of PA10,12/POE/PDP (92/3/5 wt%) demonstrated a synergistic improvement in mechanical properties, with an elongation at break of 579% and a notch impact strength of 61.54 kJ/m2. This represents an approximately eightfold increase over the impact strength of unmodified PA10,12. Therefore, our work provides the potential of PDP as a compatibilizer to develop nylon composites with enhanced stiffness and toughness.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.