Abstract

The transmission of electromagnetic waves through a sub-wavelength aperture is described by Bethe's theory. This imposes severe limitations on using apertures smaller than ∼1/100 of the wavelength for near-field microscopy at terahertz (THz) frequencies. Experimentally, we observe that the transmitted evanescent field within 1 μm of the aperture deviates significantly from the Bethe dependence of E ∝ a3. Using this effect, we realized THz near-field probes incorporating 3 μm apertures and we demonstrate transmission mode THz time-domain near-field imaging with spatial resolution of 3 μm, corresponding to λ/100 (at 1 THz).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.