Abstract

We study upper and lower bounds on the vertex-kernel size for the 3-HITTING SET problem on hypergraphs of degree at most 3, denoted 3-3-HS. We first show that, unless P = NP, 3-3-HS on 3-uniform hypergraphs does not have a vertex-kernel of size at most 35k/19 > 1.8421k. We then give a 4k - k0.2692 vertex-kernel for 3-3-hs that is computable in time O(k2). We do not assume that the hypergraph is 3-uniform for the vertex-kernel upper bound results. This result improves the upper bound of 4k on the vertex-kernel size for 3-3-HS, implied by the results of Wahlström.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.