Abstract

MALAT1 is a long noncoding RNA known to be misregulated in many human cancers. We have identified a highly conserved small RNA of 61 nucleotides originating from the MALAT1 locus that is broadly expressed in human tissues. Although the long MALAT1 transcript localizes to nuclear speckles, the small RNA is found exclusively in the cytoplasm. RNase P cleaves the nascent MALAT1 transcript downstream of a genomically encoded poly(A)-rich tract to simultaneously generate the 3' end of the mature MALAT1 transcript and the 5' end of the small RNA. Enzymes involved in tRNA biogenesis then further process the small RNA, consistent with its adoption of a tRNA-like structure. Our findings reveal a 3' end processing mechanism by which a single gene locus can yield both a stable nuclear-retained noncoding RNA with a short poly(A) tail-like moiety and a small tRNA-like cytoplasmic RNA.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.