Abstract
In all trypanosomatids, trans splicing of the spliced leader (SL) RNA is a required step in the maturation of all nucleus-derived mRNAs. The SL RNA is transcribed with an oligo-U 3' extension that is removed prior to trans splicing. Here we report the identification and characterization of a nonexosomal, 3'-->5' exonuclease required for SL RNA 3'-end formation in Trypanosoma brucei. We named this enzyme SNIP (for snRNA incomplete 3' processing). The central 158-amino-acid domain of SNIP is related to the exonuclease III (ExoIII) domain of the 3'-->5' proofreading epsilon subunit of Escherichia coli DNA polymerase III holoenzyme. SNIP had a preference for oligo(U) 3' extensions in vitro. RNA interference-mediated knockdown of SNIP resulted in a growth defect and correlated with the accumulation of one- to two- nucleotide 3' extensions of SL RNA, U2 and U4 snRNAs, a five-nucleotide extension of 5S rRNA, and the destabilization of U3 snoRNA and U2 snRNA. SNIP-green fluorescent protein localized to the nucleoplasm, and substrate SL RNA derived from SNIP knockdown cells showed wild-type cap 4 modification, indicating that SNIP acts on SL RNA after cytosolic trafficking. Since the primary SL RNA transcript was not the accumulating species in SNIP knockdown cells, SL RNA 3'-end formation is a multistep process in which SNIP provides the ultimate 3'-end polishing. We speculate that SNIP is part of an organized nucleoplasmic machinery responsible for processing of SL RNA.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.