Abstract
3-Dehydroquinate production from quinate by oxidative fermentation with Gluconobacter strains of acetic acid bacteria was analyzed for the first time. In the bacterial membrane, quinate dehydrogenase, a typical quinoprotein containing pyrroloquinoline quinone (PQQ) as the coenzyme, functions as the primary enzyme in quinate oxidation. Quinate was oxidized to 3-dehydroquinate with the final yield of almost 100% in earlier growth phase. Resting cells, dried cells, and immobilized cells or an immobilized membrane fraction of Gluconobacter strains were found to be useful biocatalysts for quinate oxidation. 3-Dehydroquinate was further converted to 3-dehydroshikimate with a reasonable yield by growing cells and also immobilized cells. Strong enzyme activities of 3-dehydroquinate dehydratase and NADP-dependent shikimate dehydrogenase were detected in the soluble fraction of the same organism and partially fractionated from each other. Since the shikimate pathway is remote from glucose in the metabolic pathway, the entrance into the shikimate pathway from quinate to 3-dehydroquinate looks advantageous to produce metabolic intermediates in the shikimate pathway.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.