Abstract

3-dimensional BF theory with gauge group G (= Chern-Simons theory with non-compact gauge group TG) is a deceptively simple yet subtle topological gauge theory. Formally, its partition function is a sum/integral over the moduli space mathcal{M} of flat connections, weighted by the Ray-Singer torsion. In practice, however, this formal expression is almost invariably singular and ill-defined.In order to improve upon this, we perform a direct evaluation of the path integral for certain classes of 3-manifolds (namely integral and rational Seifert homology spheres). By a suitable choice of gauge, we sidestep the issue of having to integrate over mathcal{M} and reduce the partition function to a finite-dimensional Abelian matrix integral which, however, itself requires a definition. We offer 3 definitions of this integral, firstly via residues, and then via a large k limit of the corresponding G × G or Gℂ Chern-Simons matrix integrals (obtained previously). We then check and discuss to which extent the results capture the expected sum/integral over all flat connections.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.