Abstract

The North German Basin is one of the three major type localities in Germany for deep geothermal energy. Here, the pore space is the dominant parameter, in contrast to fractures (Rhine Graben) and karst (Molasse Basin). To further develop the geothermal research platform Groß Schönebeck located in the Northeast German Basin, a subset of the North German Basin, we investigated the geological structure and the existence of possible fault systems in the subsurface. For this purpose, we carried out a high-resolution 3-D reflection seismic survey at the location to overcome methodical restrictions of the few 2-D seismic profiles that cross the area of interest, such as spatial focusing effects and fault imaging. The survey area extends 8 km × 8 km at the surface and focusses down to reservoir depths at 4 km. With four vibrators as source (12–96 Hz sweep, 12 s duration), we used a source line spacing of 700 m and a receiver line spacing of 400 m with both 50 m source and geophone spacing. Data processing encompassed CRS (Common Reflection Surface) stacking, post-stack time migration and depth conversion. We observed a smooth doming of the Zechstein salt from 0.6 to 1 km thickness above the continuous top of the Rotliegend Group at around 4 km depth, and the Mesozoic horizons above appear as mainly continuous reflection surfaces with gentle undulations and occasional normal faulting. We highly resolved the supra-salt sequences in the study area for the first time, which allowed us image an almost complete suite of reflectors mapped in other parts of the Northeast German Basin. However, less resolved, lower frequency images are encountered deeper than ~ 4 km. Two important factors for further field development are that we do not observe an apparent influence of crustal-scale faults, which were expected from former conceptual models for the region, and that at the current status of work, the reservoir does not show a fracture-dominated character.

Highlights

  • The extraction of hydrogeothermic energy from deep wells is deemed of great relevance in the energy transition in Germany, and tested and developed in scientific case studies

  • RissDom-A (RissDominierte Erschließung in German: fracture-dominated exploitation), we examine the use of deep geothermal resources in the North German Basin (NGB) by 3-D seismic structural exploration at the geothermal research platform in Groß Schönebeck, hosted by the German Research Centre for Geosciences (GFZ) Potsdam (Reinsch et al 2015)

  • Since the site under investigation here serves as a reference for the development of geothermal technologies, the seismic measurements in Groß Schönebeck aim at providing a detailed image of the target region in the porous sedimentary and volcanic Rotliegend Group of the Northeast German Basin (NEGB)

Read more

Summary

Introduction

The extraction of hydrogeothermic energy from deep wells is deemed of great relevance in the energy transition in Germany, and tested and developed in scientific case studies. Since the site under investigation here serves as a reference for the development of geothermal technologies, the seismic measurements in Groß Schönebeck aim at providing a detailed image of the target region in the porous sedimentary and volcanic Rotliegend Group of the Northeast German Basin (NEGB).

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.