Abstract
Point cloud rigid registration and stitching for plants with complex architecture is a challenging task, however, it is an important process to take advantage of the full potential of 3-D cameras for plant phenotyping and agricultural automation for characterizing production environments in agriculture. A methodology for three-dimensional (3-D) reconstruction of maize crop rows was proposed in this research, using high resolution 3-D images that were mapped into the colour images using state-of-the art software. The point cloud registration methodology was based on the Iterative Closest Point (ICP) algorithm. The incoming point cloud was previously filtered using the Random Sample Consensus (RANSAC) algorithm, by reducing the number of soil points until a threshold value was reached. This threshold value was calculated based on the approximate number of plant points in a single 3-D image. After registration and stitching of the crop rows, a plant/soil segmentation process was done relying again on the RANSAC algorithm. A quantitative comparison showed that the number of points obtained with a time-of-flight (TOF) camera, compared with the ones from two light detection and ranging (LIDARs) from a previous research, was roughly 23 times larger. Finally, the reconstruction was validated by comparing the seedling positions as ground truth and the point cloud clusters, obtained using the k-means clustering, that represent the plant stem positions. The resulted maize positions from the proposed methodology closely agreed with the ground truth with an average mean and standard deviation of 3.4 cm and ±1.3 cm, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.