Abstract

In a power module the parasitic inductance limits the dynamic high-frequency performance, and the area of the cooling surfaces limits the power capability. This article presents a new 3-D power electronic design methodology based on the concept of mutual inductance cancellation and multisided heat transfer. New 3-D prismatic packaging concepts are proposed for wide band gap power devices, where the devices can be mounted at acute angles to adjacent interconnects or other devices. Discussion is given on electrical and thermal path optimization in a 3-D space. To validate the 3-D prismatic packaging methodology, a 1200 V/50 A SiC half-bridge power module is fabricated and tested for electrical and thermal performance and results are compared with simulations. The power density calculated for the module is 12 kW/in <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">3</sup> (including heatsink) and shows a 31.3% inductance reduction compared to a 2-D planar module. Finally, design guidance suggested for utilizing prismatic structures is provided, together with suggested future work in the area. This article presents the first reported true 3-D power module.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call