Abstract

While the number of coronavirus cases from 2019 continues to grow, hospitals are reporting shortages of personal protective equipment (PPE) for frontline healthcare workers. Furthermore, PPE for the eyes and mouth, such as face shields, allow for additional protection when working with aerosols. 3-D printing enables the easy and rapid production of lightweight plastic frameworks based on open-source data. The practicality and clinical suitability of four face shields printed using a fused deposition modeling printer were examined. The weight, printing time, and required tools for assembly were evaluated. To assess the clinical suitability, each face shield was worn for one hour by 10 clinicians and rated using a visual analogue scale. The filament weight (21–42 g) and printing time (1:40–3:17 h) differed significantly between the four frames. Likewise, the fit, wearing comfort, space for additional PPE, and protection varied between the designs. For clinical suitability, a chosen design should allow sufficient space for goggles and N95 respirators as well as maximum coverage of the facial area. Consequently, two datasets are recommended. For the final selection of the ideal dataset to be used for printing, scalability and economic efficiency need to be carefully balanced with an acceptable degree of protection.

Highlights

  • The coronavirus (COVID-19) pandemic is challenging healthcare systems worldwide

  • This study evaluates the utilization of 3-D printers, which are otherwise used for dental purposes, to produce face shields using open-source design data and investigates their clinical suitability

  • The rationale of the present investigation was to remove the necessity of time-consuming testing procedures with respect to printing time, ease of assembly, printability, and the comfort of using open-access data to print face shields in situations of scarcity

Read more

Summary

Introduction

The coronavirus (COVID-19) pandemic is challenging healthcare systems worldwide. Organization (WHO) [1], with the number of COVID-19 patients increasing daily. To ensure the protection of the healthcare workers (HCWs) treating these patients, personal protective equipment (PPE) is imperative. Materials 2020, 13, 1997 the availability of PPE. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been extensively analyzed, showing that it is sustained in aerosols for up to 3 hours and for up to 72 h on plastic and stainless steel surfaces after contamination. Even though research shows an exponential decay in the virus titer in all experimental settings [4], it reveals that high viral loads in the upper respiratory tract might be a factor in its epidemiologic characteristics.

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.