Abstract
Future GaN-based radio frequency (RF) high-electron-mobility-transistors (HEMTs) can enable increased areal power dissipation by, for example, integrating GaN device layers with high thermal conductivity diamond substrates. To maximize the benefit of the ultrahigh-power-density electronic devices, improved package-level cooling methods are needed to prevent the package and heatsink becoming a thermal bottleneck. We demonstrate that 3-D printed polymeric microjet liquid impingement cooling can reduce the thermal resistance at the package level by ~60% with respect to GaN RF HEMTs mounted on conventional packaging.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Components, Packaging and Manufacturing Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.