Abstract

Terahertz radiation has a growing number of applications in material characterization, where spectral fingerprinting and diffractive effects are the carriers of information. On the other hand, electromagnetic waves in the range of millimeters exhibit strong unwanted specular reflections, resulting in uncontrolled interferences. This problem is especially disturbing in the goniometric time-domain spectroscopy (TDS) configuration, where angular distribution of the field modified by the sample is altered by unwanted reflections. For this reason, low-cost anti-reflection layers are desired. Here, we present a simple way of designing and manufacturing one-sided and two-sided anti-reflection polyamide layers for the THz range. The structures were fabricated using 3-D printers based on selective laser sintering. We demonstrate experimentally in the goniometric time-domain spectroscopy the significant reduction of wavelength-dependent oscillations in Fabry-Perot configuration in the range between 0.1 and 0.3 THz. We also examine the influence of the anti-reflection layers on the distribution of THz energy in reflected, transmitted, and diffracted fields.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.