Abstract

Automation of fluid manipulation is needed to increase throughput and reproducibility of experiments while reducing the time spent by researchers on performing repetitive tasks. Current solutions are, however, bulky and expensive, and hence not suited to enable automation in academic laboratories. This work, therefore, reports a low-cost, modular and programmable analytical platform comprising 3-D printed autosampler and peristaltic pump with footprints of 248 mm by 243 mm and 104 mm by 112 mm, respectively. The autosampler consisted of four sample probes/needles that can be driven independently to any of the available solution vials placed along the circumference of a circle. The 3-D printed autosampler developed in this work can access higher number of solution vials independently and is lower cost, but can accommodate fewer solution vials, than commercial devices. The autosampler and peristaltic pump were applied to determine: 1) refractive index sensitivity; 2) porosity; and 3) sensing capability of leaky waveguides (LWs) where the read-out instrument was also 3-D printed. We demonstrated that the automation of fluids enabled by the analytical platform improved the accuracy of results by separating the effect of temperature drifts from analyte solutions from the output of LWs. This work shows that 3-D printed instrumentation can provide results comparable with standard laboratory versions at much lower cost, making it ideal for use in resource-limited settings, and with the possibility of customization as experimental needs change.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.