Abstract

This paper describes a 3-D numerical hybrid method (NHM) of the permanent-magnet (PM) eddy-current losses in axial-flux PM synchronous machines (PMSMs). The PM magnetic flux density is determined using the multi-static 3-D finite-element method (FEM) at resistance-limited (i.e., without eddy-current reaction field). Based on the predicted flux density distribution, the eddy-currents induced in the PMs and the 3-D PM eddy-current losses are calculated by 3-D finite-difference method (FDM) considering a large mesh. Therefore, this 3-D NHM is based on a coupling between the multi-static 3-D FEM and the 3-D FDM. Two 24-slots/16-poles (i.e., fractional-slot number) axial-flux PMSMs having a non-overlapping winding (all teeth wound type) with stator double-sided structure are studied: 1) surface-PM (SPM) and 2) interior-PM (IPM) To evaluate the reliability of the proposed technique, the 3-D PM eddy-current losses are determined and compared with transient 3-D FEM (i.e., magneto-dynamical 3-D FEM). The same nonlinear properties of the laminations have been applied for multi-static/transient 3-D FEM. The computation time can be divided by 25 with a difference less than 12%.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call