Abstract
A newly developed numerical code MFPA3D is applied to simulate the progressive damage and failure process of laminated cylindrical composite shell. Heterogeneities in meso-scale are taken into account by randomly distributing the material properties throughout the model by following a Weibull statistical distribution. The cylindrical composite shell is discretized into 3-D block elements with the fixed size and is subjected to a lateral compressive loading, applied with a constant displacement control manner. The numerical simulation results show that not only the process of crack initiation, propagation and coalescence but also the failure process can be numerically obtained in three dimensional. The MFPA3D modeling demonstrates that the code can simulate non-linear behavior of brittle materials with a simple mesoscopic constitutive law with a strength and elastic modulus reduction of the weaken elements.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.