Abstract

Recently, deep learning algorithms, specifically convolutional neural networks (CNNs), have played an important role in remote sensing image classification, including wetland mapping. However, one limitation of deep CNN for classification is its requirement for a great number of training samples. This limitation is particularly enhanced when the classes of interest are spectrally similar, such as that of wetland types, and the training samples are limited. This article presents a novel approach named 3-D hybrid generative adversarial network (3-D hybrid GAN) that addresses the limited training sample issue in the classification of remote sensing imagery with a focus on complex wetland classification. We used a conditional map unit that generates synthetic training samples for only classes with a lower number of training samples to improve the per-class accuracy of wetlands. This procedure overcomes the issue of imbalanced data in conventional wetland mapping. Based on the achieved results, better classification accuracy is obtained by integrating a 3-D generative adversarial network (3-D GAN) and the CNN network of a 3-D hybrid CNN using both 3-D and 2-D convolutional filters. Experimental results on the avalon pilot site located in eastern Newfoundland, Canada, and covering five wetland types of bog, fen, marsh, swamp, and shallow water demonstrate that our model significantly outperforms other CNN models, including the HybridSN, SpectralNet, MLP-mixer, as well as a conventional algorithm of random forest for complex wetland classification by approximately 1% to 51% in terms of F-1 score.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.