Abstract

ABSTRACT Finding new instrumental rheological parameters that better describe sensory textures can improve correlation between rheological and sensory measurements of food. Two optical three‐dimensional (3‐D) techniques commonly used in mechanical engineering field were studied. These techniques have never been used in food science. Digital image correlation and Breuckmann scanning systems were successful to distinguish gelatin gels and soft cheeses varying in firmness and viscoelastic properties. These two systems were coupled with a universal testing machine to provide information regarding 3‐D displacements and surface deformation of sample. Mathematical models were developed to determine surface displacement profiles of samples from their firmness and viscoelastic properties. Three parameters were obtained to describe surface displacement profiles linked to samples textural properties. These parameters may be useful to develop models predicting accurately food sensory texture from instrumental measurements. PRACTICAL APPLICATIONSFinding new instrumental rheological parameters that better describe sensory textures to improve correlation between rheological and sensory measurements of food.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.