Abstract

The development of smart cities and the emergence of three-dimensional (3-D) urban terrain data have introduced new requirements and issues to the research on the 3-D deployment of wireless sensor networks. We study the deployment issue of heterogeneous wireless directional sensor networks in 3-D smart cities. Traditionally, studies on the deployment problem of WSNs focus on omnidirectional sensors on a 2-D plane or in full 3-D space. Based on 3-D urban terrain data, we transform the deployment problem into a multiobjective optimization problem, in which objectives of Coverage, Connectivity Quality, and Lifetime, as well as the Connectivity and Reliability constraints, are simultaneously considered. A graph-based 3-D signal propagation model employing the line-of-sight concept is used to calculate the signal path loss. Novel distributed parallel multiobjective evolutionary algorithms (MOEAs) are also proposed. For verification, real-world and artificial urban terrains are utilized. In comparison with other state-of-the-art MOEAs, the novel algorithms could more effectively and more efficiently address the deployment problem in terms of optimization performance and operation time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.