Abstract
We present a new 3-D seismic model of the western United States crust derived from a joint inversion of Rayleigh-wave phase velocity and ellipticity measurements using periods from 8 to 100 s. Improved constraints on upper-crustal structure result from use of short-period Rayleigh-wave ellipticity, or Rayleigh-wave H/V (horizontal to vertical) amplitude ratios, measurements determined using multicomponent ambient noise cross-correlations. To retain the amplitude ratio information between vertical and horizontal components, for each station, we perform daily noise pre-processing (temporal normalization and spectrum whitening) simultaneously for all three components. For each station pair, amplitude measurements between cross-correlations of different components (radial–radial, radial–vertical, vertical–radial and vertical–vertical) are then used to determine the Rayleigh-wave H/V ratios at the two station locations. We use all EarthScope/USArray Tranportable Array data available between 2007 January and 2011 June to determine the Rayleigh-wave H/V ratios and their uncertainties at all station locations and construct new Rayleigh-wave H/V ratio maps in the western United States between periods of 8 and 24 s. Combined with previous longer period earthquake Rayleigh-wave H/V ratio measurements and Rayleigh-wave phase velocity measurements from both ambient noise and earthquakes, we invert for a new 3-D crustal and upper-mantle model in the western United States. Correlation between the inverted model and known geological features at all depths suggests good resolution in five crustal layers. Use of short-period Rayleigh-wave H/V ratio measurements based on noise cross-correlation enables resolution of distinct near surface features such as the Columbia River Basalt flows, which overlie a thick sedimentary basin.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.