Abstract

We propose a method based on deep learning to perform cardiac segmentation on short axis Magnetic resonance imaging stacks iteratively from the top slice (around the base) to the bottom slice (around the apex). At each iteration, a novel variant of the U-net is applied to propagate the segmentation of a slice to the adjacent slice below it. In other words, the prediction of a segmentation of a slice is dependent upon the already existing segmentation of an adjacent slice. The 3-D consistency is hence explicitly enforced. The method is trained on a large database of 3078 cases from the U.K. Biobank. It is then tested on the 756 different cases from the U.K. Biobank and three other state-of-the-art cohorts (ACDC with 100 cases, Sunnybrook with 30 cases, and RVSC with 16 cases). Results comparable or even better than the state of the art in terms of distance measures are achieved. They also emphasize the assets of our method, namely, enhanced spatial consistency (currently neither considered nor achieved by the state of the art), and the generalization ability to unseen cases even from other databases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.