Abstract

New fluorescent thiazoles were designed and synthesized based on a 3-aryl-2-(thiazol-2-yl)acrylonitrile core. Three synthetic approaches were developed to introduce specific combinations of substituents at the 2-, 4- and 5-thiazole positions. The obtained thiazolyl-2-acrylonitriles exhibited a wide range of fluorescent colours (from green to red), long wavelength maxima and intensity depending on the combination of the substituents located at rings A, B and C. The expanded photophysical investigation established the best substituent combinations to increase their emission. Absorption and emission were studied in solvents with different polarities, as well as in DMSO-water and dioxane-water mixtures. The thiazoles showed multifunctional properties and exhibited good emission in the solid phase and in suspension (aggregation induced enhancement emission/AIEE effect). Photophysical investigations revealed a large Stokes shift, significant positive solvatochromism, and the tunability of the colour and intensity. Sharp strengthening of the emission intensity of the thiazoles was observed upon stimulation with some acid (H2SO4 and BF3·OEt2) in solvents and in the solid phase (HCl). State-of-the-art quantum mechanical calculations were performed to interpret the experimental findings. Biological experiments revealed the good penetration of the thiazoles into living cells and the accumulation both in lysosomes and, to a lesser extent, near membranes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.