Abstract

Minimal algebraic surfaces of general type [Formula: see text] such that [Formula: see text] are called Horikawa surfaces. In this note, [Formula: see text]-actions on Horikawa surfaces are studied. The main result states that given an admissible pair [Formula: see text] such that [Formula: see text], all the connected components of Gieseker’s moduli space [Formula: see text] contain surfaces admitting a [Formula: see text]-action. On the other hand, the examples considered allow us to produce normal stable surfaces that do not admit a [Formula: see text]-Gorenstein smoothing. This is illustrated by constructing non-smoothable normal surfaces in the KSBA-compactification [Formula: see text] of Gieseker’s moduli space [Formula: see text] for every admissible pair [Formula: see text] such that [Formula: see text]. Furthermore, the surfaces constructed belong to connected components of [Formula: see text] without canonical models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.