Abstract

3,5,3'-triiodothyronine (T3) is essential for the growth and the regulation of metabolic functions, moreover, the growth-stimulatory effect of T3 has largely been demonstrated and the pathways via which T3 promotes cell growth have been recently investigated. Type 1 diabetes (T1D) is due to the destruction of beta-cells, which occurs even through apoptosis. Aim of our study was to analyze whether T3 could have an antiapoptotic effect on cultured beta-cells undergoing apoptosis. We have demonstrated that T3 promotes cell proliferation in islet beta-cell lines (rRINm5F and hCM) provoking an increment in cell number (up to 55%: rRINm5F and 45%: hCM), cell viability, and BrdU incorporation, and regulating the cell cycle-related molecules (cyc A, D1, E, and p27(kip1)). T3 inhibited the apoptotic process induced by streptozocin, S-Nitroso-N-Acetylpenicylamine (SNAP), and H2O2 via regulation of the pro- and anti-apoptotic factors Bcl-2, Bcl-XL, Bad, Bax, and Caspase 3. The T3 protective effect was PI-3 K-, but not MAPK- or PKA-mediated, involving pAktThr308. Thus, T3 could be considered a survival factor protecting islet beta-cells from apoptosis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.