Abstract

In this paper, we investigate laser emission at 3.4μm in heavily-erbium-doped fluoride fibers using dual-wavelength pumping. To this extent, a monolithic 7 mol% erbium-doped fluoride fiber laser bounded by intracore fiber Bragg gratings at 3.42 μm is used to demonstrate a record efficiency of 38.6 % with respect to the 1976 nm pump. Through numerical modeling, we show that similar laser performances at 3.4 μm can be expected in fluoride fibers with erbium concentrations ranging between 1 - 7 mol%, although power scaling should rely on lightly-doped fibers to mitigate the heat load. Moreover, this work studies transverse mode-beating of the 1976 nm core pump and its role in the generation of a periodic luminescent grating and in the trapping of excitation in the metastable energy levels of the erbium system. Finally, we also report on the bistability of the 3.42 μm output power of the 7 mol% erbium-doped fluoride fiber laser.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.