Abstract

As ultimate sink for xenobiotics released into the environment, sediments play an important role concerning the evaluation of the fate of foreign compounds. 3,4-Dichloroaniline (3,4-DCA) is a degradation product of herbicide propanil and some urea herbicides. Propanil was extensively used worldwide in rice cultivation. The aim of the study was to examine the fate of 14C-labeled 3,4-DCA in a sediment-water system; the sediment was derived from a rice field in Northern Italy. After application of 14C-3,4-DCA, a time-course study was performed using incubation periods from 4h to 56days. Fractions obtained from assays were water phase, sediment phase including methanol and Soxhlet extract as well as non-extractable residues (NER), and mineralized portion (14CO2). Soluble fractions were examined by TLC, HPLC and GC–MS. NER found in sediment phases were further fractionated in non-humics, humic acids, fulvic acids and humin. Stability of systems was checked by microbial activity, dissolved oxygen and pH. After 56days of incubation, 23.1% of applied 14C was mineralized, only 1.30% remained in the water phase, whereas 60.8% was found in the sediment phase, 53.3% of which were NER. Minor metabolites identified were 3,4-dichloroacetanilide (3,4-DCAA) and 3,3′,4,4′-tetrachloroazobenzene (TCAB; 2.63% after 56days). According to pH, dissolved oxygen and microbial activity, systems appeared to be stable and not influenced by applied 3,4-DCA. Most striking result was the high mineralization rate as compared to previously published data. This finding suggested an adaptation of the microbial community in the sediment possibly due to decade-long treatment of rice fields with propanil.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call