Abstract

3,4,5-Trihydroxycinnamic acid (THC) has been demonstrated to exert anti-inflammatory activities in LPS-induced RAW264.7 murine macrophage cells and in LPS-induced septic mice. However, the effect of THC on the inflammatory response in vascular endothelial cells has not been clearly examined. The goal of the present study was to elucidate the anti-inflammatory properties of THC and its underlying mechanism in LPS-challenged human umbilical vein endothelial cells (HUVECs). THC significantly suppressed LPS-induced interleukin-1β production and intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 expression and significantly decreased LPS-induced nuclear factor-κB activation by attenuating p65 phosphorylation and inhibitor of kappa B degradation. To understand the underlying mechanism of the anti-inflammatory effect of THC, the involvement of the sirtuin 1 (SIRT1) signaling pathway was examined. THC resulted in increased expression of SIRT1 in LPS-challenged HUVECs. Among the downstream molecular targets of SIRT1, the level of LPS-induced acetylated p53 was significantly decreased by THC treatment, whereas no noticeable change was observed in the levels of forkhead box O3 and peroxisome proliferator activated receptor gamma coactivator 1 alpha. In conclusion, the results clearly demonstrate that THC possesses anti-inflammatory properties by increasing SIRT1 expression and subsequent suppression of p53 activation in LPS-challenged HUVECs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call