Abstract

A silicon-on-insulator microring with three superimposed gratings is proposed and characterized as a device enabling 3×3 optical switching based on orbital angular momentum and wavelength as switching domains. Measurements show penalties with respect to the back-to-back of <1 dB at a bit error rate of 10-9 for OOK traffic up to 20Gbaud. Different switch configuration cases are implemented, with measured power penalty variations of less than 0.5dB at bit error rates of 10-9. An analysis is also carried out to highlight the dependence of the number of switch ports on the design parameters of the multigrating microring.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.