Abstract

The firefighter problem is a monotone dynamic process in graphs that can be viewed as modeling the use of a limited supply of vaccinations to stop the spread of an epidemic. In more detail, a fire spreads through a graph, from burning vertices to their unprotected neighbors. In every round, a small amount of unburnt vertices can be protected by firefighters. How many firefighters per turn, on average, are needed to stop the fire from advancing?We prove tight lower and upper bounds on the amount of firefighters needed to control a fire in the Cartesian planar grid and in the strong planar grid, resolving two conjectures of Ng and Raff.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.