Abstract

We construct a variational wave function for the ground state of weakly interacting bosons that gives a lower energy than the mean-field Girardeau-Arnowitt (or Hartree-Fock-Bogoliubov) theory. This improvement is brought about by incorporating the dynamical 3/2-body processes where one of two colliding non-condensed particles drops into the condensate and vice versa. The processes are also shown to transform the one-particle excitation spectrum into a bubbling mode with a finite lifetime even in the long-wavelength limit. These 3/2-body processes, which give rise to dynamical exchange of particles between the non-condensate reservoir and condensate absent in ideal gases, are identified as a key mechanism for realizing and sustaining macroscopic coherence in Bose-Einstein condensates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.