Abstract
Despite the widespread utilizable value of 3-oxazolines, mild and efficient access to such a class of unique structures still remains, to date, a challenge. Herein, we present a [3 + 2] annulation strategy, guided by the retrosynthetic principle of [CO + CCN], that utilizes vinyl azides as the CCN module and aldehydes as the CO module. This approach enables the efficient construction of the 3-oxazoline framework with remarkable features, including operational simplicity, environmental friendliness, and high efficiency. Notably, it solely requires the addition of inexpensive and readily available N-hydroxyphthalimide (NHPI) and air oxygen to obtain the desired product. It also provides a new way to generate the hydroxyl radical, which is produced by the homolysis of peroxycarboxylic acid. In addition, control experiments, X-ray crystallographic analysis, high-resolution mass spectrometry (HRMS), and density functional theory (DFT) calculations afford evidence for the key intermediates (hydroxyl radical, carboxyl radical, imine radical, hydroxyl substituted amide derivatives), further confirming the path for realization of 3-oxazolines.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.