Abstract

프로세서의 성능을 효율적으로 증가시키기 위한 기법 중 하나로 명령어 수준의 병렬성을 높이는 추론적 수행(Speculative execution)이 사용되고 있다. 추론적 수행 기법의 효율성을 결정하는 가장 중요한 핵심 요소는 분기 예측기의 정확도이다. 하지만, 높은 예측율을 보장하는 복잡한 구조의 분기 예측기를 최근 주목 받고 있는 3차원 구조 멀티코어 프로세서에 적용하는데 있어서는 발열 현상이 큰 장애요소가 될 것으로 예측된다. 본 논문에서는 3차원 구조 멀티코어 프로세서에서 발생할 수 있는 분기 예측기의 높은 발열 문제를 해결하기 위해 두 가지 기법을 제시하고, 이에 대한 효율성을 상세하게 분석하고자 한다. 첫번째 기법은 분기 예측기의 온도가 임계 온도 이상으로 올라가는 경우 분기 예측기의 동작을 일시적으로 정지시키는 동적 온도 관리 기법이고, 두번째 기법은 3차원 구조 멀티코어 프로세서의 각 층 별로 온도를 고려하여 서로 다른 복잡도를 지닌 분기 예측기를 차등 배치하는 기법이다. 두 가지 기법 중에서 복잡도를 고려한 차등 배치 기법은 평균 <TEX>$87.69^{\circ}C$</TEX>의 온도를 나타내는 반면, 동적 온도 관리 기법은 평균 <TEX>$89.64^{\circ}C$</TEX>의 온도를 나타내었다. 그리고, 각 층에서 발생하는 온도 변화율을 각 기법에 대하여 비교한 결과, 동적 온도 관리 기법의 온도 변화율은 평균 <TEX>$17.62^{\circ}C$</TEX>을 나타내었고 복잡도 차등 배치 기법의 온도 변화율은 평균 <TEX>$11.17^{\circ}C$</TEX>을 나타내었다. 이러한 온도 분석을 통하여 3차원 멀티코어 프로세서에서 분기 예측기의 온도를 제어하였을 경우, 복잡도 차등 배치 기법을 적용하는 것이 더 효율적임을 알 수 있다. 성능적인 측면을 분석한 결과, 동적 온도 관리 기법은 해당 기법을 적용하지 않았을 경우보다 평균 27.66%의 성능하락을 나타내었지만, 복잡도 차등 배치 기법은 평균 3.61%의 성능 하락만을 나타내었다. Speculative execution for improving instruction-level parallelism is widely used in high-performance processors. In the speculative execution technique, the most important factor is the accuracy of branch predictor. Unfortunately, complex branch predictors for improving the accuracy can cause serious thermal problems in 3D multicore processors. Thermal problems have negative impact on the processor performance. This paper analyzes two methods to solve the thermal problems in the branch predictor of 3D multi-core processors. First method is dynamic thermal management which turns off the execution of the branch predictor when the temperature of the branch predictor exceeds the threshold. Second method is thermal-aware branch predictor placement policy by considering each layer's temperature in 3D multi-core processors. According to our evaluation, the branch predictor placement policy shows that average temperature is <TEX>$87.69^{\circ}C$</TEX>, and average maximum temperature gradient is <TEX>$11.17^{\circ}C$</TEX>. And, dynamic thermal management shows that average temperature is <TEX>$89.64^{\circ}C$</TEX> and average maximum temperature gradient is <TEX>$17.62^{\circ}C$</TEX>. Proposed branch predictor placement policy has superior thermal efficiency than the dynamic thermal management. In the perspective of performance, the proposed branch predictor placement policy degrades the performance by 3.61%, while the dynamic thermal management degrades the performance by 27.66%.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call