Abstract

AbstractBob Oliver conjectures that if p is an odd prime and S is a finite p-group, then the Oliver subgroup $\mathfrak{X}(S)$ contains the Thompson subgroup Je(S). A positive resolution of this conjecture would give the existence and uniqueness of centric linking systems for fusion systems at odd primes. Using the ideas and work of Glauberman, we prove that if p ≥ 5, G is a finite p-group, and V is an elementary abelian p-group which is an F-module for G, then there exists a quadratic offender which is 2-subnormal (normal in its normal closure) in G. We apply this to show that Oliver's Conjecture holds provided that the quotient $G=S/\mathfrak{X}(S)$ has class at most log2(p − 2) + 1, or p ≥ 5 and G is equal to its own Baumann subgroup.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.