Abstract

In this report, we discuss the synthesis of a compound obtained from the derivatization of the natural compound celastrol. This derivative is connected to PEG azide moiety through an amide linkage. The linkage was achieved through the activation of the carboxylic acid using HOBt/EDC. The compound was fully characterized by proton (1H), carbon-13 (13C), heteronuclear single quantum coherence (HSQC), correlation spectroscopy (1H-1H-COSY), and distortionless enhancement by polarization transfer (DEPT) NMR. Ultraviolet (UV), Fourier-transform infrared (FTIR), and high-resolution mass spectrometry (HRMS) were also adopted. Computational investigations were conducted to forecast the binding mode between the synthesized compound and sarco-endoplasmic reticulum (SR) Ca2+ transport ATPase (SERCA), a known target for the development of novel therapeutics for rheumatoid arthritis. Additionally, the drug-likeness of the synthesized compound was assessed by predicting its pharmacokinetic properties.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call