Abstract

In this study, the theoretical photo-neutron cross-sections produced by (γ,2n) reactions for several structural fusion materials such as 51V, 55Mn, 58Ni, 90,91,92,94Zr, and 181Ta have been carried out for incident photon energies up to 40 MeV. Reaction cross-sections as a function of photon energy have been calculated theoretically using the PCROSS and TALYS 1.2 computer codes. TALYS 1.2 default and pre-equilibrium models have been used to calculate the pre-equilibrium photo-neutron cross-sections. For the reaction equilibrium component, PCROSS Weisskopf–Ewing model calculations have been preferred. The calculated results have been compared with each other and against the experimental data in the existing databases EXFOR. Generally, TALYS 1.2 default and pre-equilibrium model cross-section calculations are in good agreement with the experimental data for all reactions along the incident photon energy in this study. Pre-equilibrium option can be recommended, if experimental data are not available or are unlikely to be produced due to the experimental difficulty.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.