Abstract

The development of facile methods for conjugating relevant probes, ligands, or delivery agents onto oligonucleotides (ONs) is highly desirable both for fundamental studies in chemical biology and for improving the pharmacology of ONs in medicinal chemistry. Numerous efforts have been focused on the introduction of bioorthogonal groups onto phosphoramidite building blocks, allowing the controlled chemical synthesis of reactive ONs for postsynthetic modifications. Among these building blocks, alkyne, cyclooctynes, trans-cyclooctene, and norbornene have been proved to be compatible with automated solid-phase chemistry. Herein, we present the development of novel 2'-functionalized nucleoside phosphoramidite monomers comprising bioorthogonal methylcyclopropene or sydnone moieties and their introduction for the first time to ON solid-phase synthesis. Traceless ON postsynthetic modifications with reactive complementary probes were successfully achieved through either inverse electron-demand Diels-Alder (iEDDA) reactions or strain-promoted sydnone-alkyne cycloaddition (SPSAC). These results expand the set of bioorthogonal phosphoramidite building blocks to generate ONs for postsynthetic labeling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.